4.3 Les notions de base sur les signaux et le bruit dans les systèmes de communication
4.3.7 Bruit
Le bruit est un ajout indésirable à un signal de tension, un signal optique ou un signal électromagnétique. Aucun signal électrique n'est exempt de bruit. Toutefois, il est important de maintenir le rapport signal/bruit le plus élevé possible. Le rapport signal/bruit est une mesure et un calcul techniques qui prévoit la division de l'intensité du signal par l'intensité du bruit. Le résultat ainsi obtenu indique la facilité de décrypter le signal voulu du bruit indésirable et cependant inévitable. En d'autres termes, chaque bit reçoit des signaux supplémentaires non désirés de diverses sources. Trop de bruit peut corrompre un chiffre binaire 0 en chiffre binaire 1, en inversement, détruisant ainsi le message . Le graphique montre quatre sources de bruit pouvant affecter un bit sur un câble.

Paradiaphonie-A et paradiaphonie-B
Lorsque le bruit électrique sur un câble provient des signaux émis par d'autres fils dans le câble, on parle de diaphonie. Paradiaphonie signifie diaphonie rapprochée. Lorsque deux fils non torsadés se trouvent à proximité l'un de l'autre, l'énergie d'un fil peut se propager dans le fil adjacent, et inversement. Cela peut entraîner du bruit aux deux extrémités d'un câble raccordé. Il existe en fait plusieurs formes de diaphonie qui doivent être prises en compte au moment de la conception d'un réseau.

Le problème de la paradiaphonie peut être réglé grâce à la technologie de raccordement, au respect rigoureux des procédures de raccordement type et à l'utilisation de câbles à paires torsadées de qualité.

Paradiaphonie-A indique une diaphonie rapprochée au niveau de l'ordinateur A et Paradiaphonie-B une diaphonie rapprochée au niveau de l'ordinateur B.

Bruit thermique
Le bruit thermique, causé par le mouvement aléatoire des électrons, est inévitable. Cependant, il est habituellement peu élevé en comparaison des signaux.

Bruit d'alimentation secteur et bruit de fond de référence
Les bruits d'alimentation secteur et bruits de fond de référence sont des problèmes très importants dans le domaine des réseaux. Le bruit d'alimentation secteur crée des problèmes dans les foyers, les écoles et les bureaux. L'électricité est acheminée aux appareils électriques et aux machines par des fils dissimulés dans les murs, planchers et plafonds. En conséquence, nous sommes littéralement entourés par le bruit d'alimentation secteur. En l'absence de mesures de prévention appropriées, le bruit d'alimentation secteur peut entraîner des problèmes sur un réseau. 

Idéalement, la mise à la terre de référence doit être complètement isolée de la mise à la terre électrique. L'isolation de la mise à la terre de référence éviterait que les fuites d'alimentation secteur et les pointes de tension ne l'atteignent. Cependant, le boîtier d'un ordinateur sert de mise à la terre de référence, mais aussi de mise à la terre du secteur électrique. Puisqu'il existe un lien entre la mise à la terre de référence et celle de l'alimentation, des problèmes avec cette dernière peuvent entraîner des interférences dans le système informatique. De telles interférences peuvent être difficiles à détecter et à localiser. Habituellement, cela provient du fait que les entrepreneurs en électricité et les installateurs ne se préoccupent pas de la longueur du fil neutre et du fil de terre qui mènent à chaque prise de courant. Malheureusement, lorsque ces fils sont longs, ils peuvent agir comme une antenne et attirer le bruit d'origine électrique. C'est ce bruit qui interfère avec les signaux numériques (bits) que doit reconnaître et traiter un ordinateur.

Vous découvrirez que le bruit d'alimentation secteur émanant d'un moniteur ou d'un disque dur situé à proximité d'un système informatique peut être suffisant pour entraîner des erreurs dans ce système. Le bruit crée de l'interférence (modification de la forme de l'onde et du niveau de tension) avec les signaux désirés et empêche les portes logiques d'un ordinateur de détecter les flancs avant et arrière des ondes carrées. Ce problème peut s'aggraver encore davantage si la mise à la terre d'un ordinateur n'est pas effectuée correctement.

Interférences électromagnétiques et interférences de radiofréquences
Parmi les sources externes d'impulsions électriques susceptibles d'atténuer la qualité des signaux électriques dans le câble, citons l'éclairage, les moteurs électriques et les systèmes de radiocommunication. Ces types d'interférence sont connus sous le nom d'interférences électromagnétiques et d'interférences de radiofréquences. 

Chaque fil dans un câble peut agir comme une antenne. Lorsque cela se produit, le fil absorbe en fait les signaux électriques des autres fils du câble et des sources électriques situées à l'extérieur du câble. Si le bruit électrique résultant atteint un niveau suffisamment élevé, les cartes réseau  peuvent éprouver de la difficulté à distinguer le bruit du signal de données. Cela s'avère particulièrement problématique dans la mesure où la plupart des réseaux locaux utilisent des fréquences comprises entre 1 et 100 Mégahertz (MHz), qui se trouve aussi être la bande de fréquences qu'utilisent les signaux de radio FM, de télévision et de bon nombre d'appareils électriques.

Examinons à présent comment le bruit d'origine électrique, indépendamment de sa source, affecte les signaux numériques. Supposons que vous souhaitiez transmettre sur le réseau les données représentées par le nombre binaire 1011001001101. Votre ordinateur convertit le nombre binaire en signal numérique. Le graphique indique à quoi ressemble le signal numérique du nombre binaire 1011001001101. Le signal numérique se propage dans le média réseau vers sa destination. La destination se situe à proximité d'une prise de courant alimentée par un long fil neutre et un long fil de terre. Ces fils agissent comme des antennes potentielles pour le bruit d'origine électrique. Le graphique montre à quoi ressemble le bruit électrique. 

Comme le boîtier de l'ordinateur de destination est utilisé à la fois pour la mise à la terre électrique et la mise à la terre de référence, le bruit créé interfère avec le signal numérique reçu par l'ordinateur. Le graphique montre ce qui arrive au signal lorsqu'il est associé à du bruit d'origine électrique. Au lieu de lire le signal 1011001001101, l'ordinateur lit 1011000101101, affectant ainsi la fiabilité des données.

Contrairement aux fils de cuivre, les systèmes optiques et sans fil sont sensibles à certains de ces bruits, mais ils sont insensibles à d'autres. Ainsi, la fibre optique est insensible à la paradiaphonie, ainsi qu'aux bruits d'alimentation secteur et de mise à la terre de référence. Quant aux systèmes sans fil, ils sont particulièrement sensibles aux interférences électromagnétiques et aux interférences de radiofréquences. L'accent a été mis sur le bruit dans les systèmes à fils de cuivre. Le problème de la paradiaphonie peut être réglé grâce à la technologie de raccordement, au respect rigoureux des procédures de raccordement type et à l'utilisation de câbles à paires torsadées de qualité. 

Il n'y a rien à faire contre le bruit thermique, si ce n'est donner aux signaux une amplitude suffisamment importante pour que l'impact du bruit soit insignifiant.  Pour éviter le problème de mise à la terre de référence/alimentation secteur décrit précédemment, il importe de travailler en étroite collaboration avec
l'entrepreneur en électricité et la compagnie d'électricité avec lesquels vous faites affaire. Cela vous permettra d'obtenir la meilleure et la plus courte mise à la terre électrique. Une façon d'atteindre cet objectif est d'examiner ce qu'il en coûterait pour faire installer un transformateur d'alimentation à l'usage exclusif de votre réseau local. Si vous pouvez vous permettre cette option, vous pouvez contrôler le raccordement d'autres appareils à votre circuit d'alimentation. Restreindre le nombre d'appareils, tels les moteurs ou les radiateurs électriques à haute intensité, qui sont raccordés et contrôler l'endroit où ils sont raccordés peut éliminer en grande partie le bruit d'origine électrique produit. 

Lorsque vous travaillez avec votre entrepreneur en électricité, demandez-lui d'installer des tableaux de distribution du courant, aussi connus sous le nom de boîtes de disjoncteurs, distincts pour chaque bureau. Comme les fils neutres et les fils de terre de chaque prise se rejoignent dans la boîte de disjoncteurs, cette mesure augmentera vos chances de raccourcir la longueur de la terre de signalisation. Bien que l'installation de panneaux de distribution du courant distincts pour chaque grappe d'ordinateurs puisse augmenter les coûts de l'installation initiale, elle permet de réduire la longueur des fils de mise à la terre et de limiter plusieurs types de bruits électriques qui " étouffent " les signaux.


Il existe plusieurs façons de limiter les interférences électromagnétiques et de radiofréquences. L'une d'elles consiste à augmenter la taille des fils conducteurs. Une autre est d'améliorer le type de matériau isolant utilisé. Toutefois, ces changements augmentent davantage la taille et le coût du câble qu'ils n'en améliorent la qualité. C'est pourquoi les concepteurs de réseaux optent généralement pour un câble de bonne qualité et précisent la longueur de câble maximale recommandée entre les nœuds. 

Le blindage et l'annulation sont deux techniques utilisées par les concepteurs de câbles pour résoudre les problèmes liés aux interférences électromagnétiques et de radiofréquences. Dans le cas d'un câble qui utilise le blindage, une tresse ou une feuille métallique entoure chaque paire de fils ou chaque groupe de paires de fils. Ce blindage agit comme un écran et bloque tout signal parasite. Toutefois, comme dans le cas de l'augmentation de la taille des conducteurs, l'utilisation d'une tresse ou d'une gaine augmente le diamètre du câble, ainsi que son coût. C'est pourquoi l'annulation est la technique la plus couramment utilisée pour protéger le fil des interférences indésirables.

Lorsque du courant électrique circule dans un fil, il crée un petit champ magnétique circulaire autour de celui-ci. La direction de ces lignes de force magnétique est déterminée par la direction du courant dans le fil. Si deux fils font partie du même circuit électrique, les électrons circulent de la source de tension négative vers sa destination dans un fil. Ensuite, les électrons circulent de la destination vers la source de tension positive dans l'autre fil. Lorsque deux fils d'un circuit électrique sont situés à proximité, leurs champs magnétiques sont exactement opposés l'un à l'autre. Dès lors, les deux champs magnétiques s'annulent. Ils annuleront également tout autre champ magnétique extérieur. La torsion des fils rehausse cet effet d'annulation. Grâce à l'utilisation conjuguée de l'annulation et de la torsion des fils, les concepteurs de câbles peuvent offrir une méthode de blindage efficace pour les paires de fils à l'intérieur du média réseau.

icon2.gif (1 232 octets) Liens Web
Tests sur le bruit électrique acheminé